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Abstract Wearable computers have the potential to act
as intelligent agents in everyday life and to assist the user
in a variety of tasks, using context to determine how to
act. Location is the most common form of context used
by these agents to determine the user’s task. However,
another potential use of location context is the creation
of a predictive model of the user’s future movements.
We present a system that automatically clusters GPS
data taken over an extended period of time into mean-
ingful locations at multiple scales. These locations are
then incorporated into a Markov model that can be
consulted for use with a variety of applications in both
single-user and collaborative scenarios.

Keywords Context Æ GPS Æ Location aware
computing Æ Schedule prediction

1 Introduction

For any user-assisting technology to be truly useful and
not merely irritating, it must have some knowledge of the
user to be assisted: it must understand—or at least pre-
dict—what the user will do, when and where she will do
it, and, ideally, the reason for her actions. User modelling
is a necessary step toward gaining this understanding.

Csinger defines user modelling as ‘‘...the acquisition
or exploitation of explicit, consultable models of either
the human users of systems or the computational agents
which constitute the systems’’ [4]. This definition, how-
ever, raises the question of ‘‘what constitutes a model?’’
For the purposes of our research, we consider a model to
be a collection of data on some particular aspect of a
human user’s behaviour that, when associated with a

limited set of contextual clues, yields predictions on
what behaviour the human will engage in next.

In this paper, we describe research investigating one
facet of user modelling, that of location. Location is one
of the most commonly used forms of context: it is usu-
ally easy to collect location data, and other pieces of
context may be inferred from location, such as the
presence of other people. In our research, we used off-
the-shelf Global Positioning System (GPS) hardware to
collect location data in a simple and reliable manner. We
constructed software to interpret the collected data,
allowing the creation and querying of location models.

1.1 Previous work

In his master’s thesis [15], Jon Orwant describes Dopp-
elgänger, a ‘‘user modelling shell’’ that learns to predict
a user’s likes and dislikes. Orwant uses active badges,
Unix logins and schedule files to guess where in a
building a particular user is likely to go. The possible
locations in the Doppelgänger system were, in a sense,
hard-coded, since a user was detected by fixed locations
in the infrastructure. In contrast, GPS requires no
infrastructure (or, rather, its infrastructure is worldwide)
but does not work inside buildings or other places where
its satellite signals are not visible. Overall, however, GPS
offers a wider range of location information than do
infrastructure-dependent fixed sensors.

Sparacino used infrared beacons to create individua-
lised models of museum visitors [17] allowing each ex-
hibit to present custom audiovisual narrations to each
user. As visitors move throughout the museum, their
exhibit-viewing habits are classified into one of three
categories: greedy (wanting in-depth information on
everything), selective (wanting in-depth information on a
selection of exhibits), or busy (wanting to see a little bit of
everything). These classifications are estimated by a
Bayesian network, using the viewer’s stopping time at
each exhibit as input.

Location prediction systems have become of interest in
the cellular network community in recent years. The
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United States government wants to be able to locate
people who place emergency 911 calls from cell phones,
and various location-based contextual services are being
discussed. Another concern is limiting the amount of
cellular infrastructure dedicated to locating a user so her
calls may be delivered. Bhattacharya and Das describe a
cellular-user tracking system for call delivery that uses
transitions between wireless cells as input to a Markov
model [2]. As users move between cells, or stay in a cell for
a long period of time, the model is updated and the net-
work has to try fewer cells to successfully deliver a call.

Similarly, Liu and Maguire described a generalised
network architecture that incorporated prediction with
the goal of supporting mobile computing [13]. Mobile
units wirelessly communicating with the network pro-
vide updates of their locations and a predictive model is
created, allowing services and data to be pre-cached at
the most likely future locations.

Davis et al. utilised location modelling in their inves-
tigations of highly-partitioned ad-hoc networks [6]. As
mobile agents moved around a simulated environment,
passing packets between stationary agents, location
models were created. The models allowed an agent that
was less likely to deliver a particular packet to pass it to an
agent that had a higher likelihood of successful delivery.

Unlike those using fixed sensors, systems using GPS
to detect location must have some method to determine
which locations are significant, and which may be ig-
nored. In their investigations of automatic travel diaries
[20], Wolf et al. used stopping time to mark the starting
and ending points of trips. In their work on the com-
Motion system [14], Marmasse and Schmandt used the
loss of GPS signals to detect buildings. When the GPS
signal was lost and then later re-acquired within a cer-
tain radius, comMotion considered this to be indicative
of a building. This approach avoided false detection of
buildings when passing through urban canyons or suf-
fering from hardware issues such as battery loss.

2 Applications

Potential applications for a location-modelling system
fall into two main categories: single-user, or non-col-
laborative, and multi-user, or collaborative. Single-user
applications are those that can be applied to one person
with only her own location model. Collaborative appli-
cations, on the other hand, are useful only with two or
more location models, and may be used to promote
cooperation and collaboration between individuals.

2.1 Single-user applications

In their paper on the comMotion system [14], Marmasse
and Schmandt explore the idea of an agent that learns
frequented locations. The user may associate a to-do list
with each location, in the form of text or audio. When
the user reaches a location, the applicable to-do list is

displayed. One to-do example Marmasse provides is that
of reminding the user of her shopping list as she nears a
grocery store. If the user was driving, however,
reminding her that she needed to visit the store as she
passes it could be frustrating and distracting. Instead,
reminding the user several miles in advance, or even as
she enters her car, would be more productive.

Many other early-reminder applications may easily
be imagined. For example, suppose a user has a library
book she needs to return. If her location model predicts
she’ll be near the library later in the day, she can be
reminded to take the book on the way out of the house.

Reminders are not the only possible use for the single
user: wearable computer systems issues may be addressed
as well. Wireless networks, while very useful for wearable
users, are often inaccessible due to lack of infrastructure,
radio shadows caused by buildings, power requirements
and other problems. In some cases, however, this lack of
connectivity may be hidden from the user by caching [11].
For example, if a user composes an e-mail while riding
the subway, the wearable may add the message to its
outgoing queue and wait to send it until the network is
available. On the other hand, if the message is urgent,
this behaviour may not be appropriate. If the user is
predicted to be out of range of the network for some
time, she could be alerted of possible alternate travel
paths that will allow her message to be sent.

For less urgent e-mail and Internet services, it may be
desirable to delay transmission even when a wireless
connection is available. Energy is one of the most pre-
cious resources for mobile devices, and the amount of
energy needed to transmit a message may go up with the
fourth power of distance in some situations [3]. In
addition, the cost of transmission may vary with the
time of day and the type of service that is used. Location
prediction abilities could allow a wearable computer to
optimise its transmissions based on the cost and avail-
ability of service in various locations and the knowledge
of how its user moves throughout the day.

2.2 Multi-user applications

When multiple people share their location models, either
fully or partially, many useful applications become
possible. The models could be shared by giving full or
partial copies to trusted associates, delegating the
coordination of models to a central service, or allowing
remote queries from colleagues whenever information is
needed. These three options run from more convenient
to more accurate: copying models allows instant access
to another person’s model, but doesn’t guarantee that it
will be up to date; a central service allows models to be
updated whenever one party has connectivity, making
the model more likely to be valid, and remote queries
can ensure accuracy at the possible cost of high latency.

Regardless of the sharing mechanism, there are sev-
eral interesting applications that could be implemented.
The simplest scenario is thus: a user, who we’ll call Alice,
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could ask, ‘‘Will I see Bob today?’’ This type of query
gives Alice a useful piece of information—if she needs to
bring a thick textbook to Bob, she will only want to take
it with her if she’s likely to see Bob that day. The query
also preserves Bob’s privacy, since it is never revealed to
Alice when she’ll see Bob, where she’ll see Bob, or where
else Bob has been that day.

One step up from this simple application is the
common problem of scheduling a meeting for several
people. In his description of the QuickStep platform
[16], Jörg Roth described a sample application
that facilitated scheduling meetings by showing
each user the others’ calendars. While a participant
would see each user’s calendar and when they were
unavailable, the labels that showed the reason for the
unavailability were removed. Privacy could be preserved
to an even greater extent by hiding the schedules them-
selves from the group and deferring the schedule
suggestions to some central system. Such a system could
not only find a time when every member is available, but
a time when each person is close to the desired meeting
location.

Another possibility is encouraging serendipitous
meetings between colleagues. Suppose Alice’s model
indicates that she has lunch at a certain café every
Thursday. If Bob happens to be in that general area on
Thursday near lunchtime, he could be notified that Alice
might be eating nearby so he can give her a call and meet
with her.

Michael Terry’s Social Net [19] presents an innova-
tive way to meet people with similar interests. It ‘‘sear-
ches for patterns of physical proximity between people,
over time, to infer shared interests between users.’’
Social Net has been implemented using the wireless
capabilities of the Cybiko [5] toy to detect proximity.
The Cybiko’s low (300 foot) range suggests that using
location models might be a better way to provide
proximity input to Social Net—two people who work in
the same building, for example, might be more than 300
feet away from each other almost all of the time. A
model that represents places rather than proximity
would have a better chance of noticing those people’s
co-location.

Rather than linking people with similar interests,
location modelling could allow otherwise unconnected
individuals to exchange favours with each other. For
example, suppose Alice needs a book on cryptography
for her research, but will not have time to go to the
library for several days. She could submit her request to
some central arbitration system. The system could look
at all of the location models it has for various people,
and perhaps discover that Bob will be near the library
soon, and not long thereafter near Alice’s location. If he
is willing, Bob can then pick up the book and deliver it
to Alice. One can imagine a sort of reputation system
based on favours like these, such as that described in
Bruce Stirling’s book Distraction [18]. In their work on
the WALID system [12], Kortuem et al. created a
framework for negotiation between wearable computers

that explores many of the issues inherent in this sort of
system.

The final application for location models we will
discuss is that of intelligent interruption. While James
Hudson demonstrated that the nature and desirability of
interruption is often uncertain [10], there are certain
situations in which being interrupted by, say, a ringing
cellular phone is definitely not acceptable. By allowing
one’s wearable computer to manage potential interrup-
tions like cell phones, location models can be used to
make an intelligent guess about whether the user is
interruptible or not.

As an example, imagine that the user has a class from
4:00 to 5:00 p.m. every day. When the user enters the
classroom, her wearable, having learned from previous
situations, automatically turns her cell phone ringer off.
If someone calls during the class, her wearable answers
for her, perhaps telling the caller that she will be avail-
able around 5:00 when her class is over. As the user
walks out of class, her wearable reactivates her phone’s
ringer and alerts her that someone has called.

3 The pilot study

In order to begin investigating the benefits provided by
location modelling, we constructed a system to record
and model an individual’s travel. In its current form, the
system performs modelling and prediction on different
scales and allows queries to the model such as ‘‘The user
is currently at home. What is the most likely place she
will go next?’’ and ‘‘How likely is the user to stop at the
grocery store on the way home from work?’’ Combining
the answers to these questions for several users can lead
to serendipitous meetings: if the response to ‘‘Where is
the user most likely to go next?’’ is the same for two
colleagues, they can be alerted that they’re likely to meet
each other.

To date, we have conducted two studies. In 2001, we
performed a pilot study with a single user over the
course of four months [1]. We used this study to develop
our algorithms; in order to show that the system gen-
eralises, we conducted a second study in 2002 with six
users which lasted seven months. We discuss and com-
pare the results of both studies in the following sections.

3.1 The apparatus

In our original study, we used a Garmin model 35-LVS
wearable GPS receiver and a GPS data logger, both
from GeoStats [9], to collect data from one user for a
period of four months. During those four months, the
user travelled mainly in and around Atlanta, Georgia.
Our data logger recorded the latitude, longitude, date
and time from the GPS receiver at an interval of once
per second, but only if the receiver had a valid signal and
was moving at one mile an hour or greater. When the
receiver was indoors or otherwise had its signal blocked,
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the logger therefore did not record anything. Because
humans walk at an average of three miles per hour, we
captured most forms of transit, including automobile.
Figure 1 shows this original data superimposed on a
map of Atlanta.

3.2 The methodology

When creating our location modelling system, we wan-
ted to process the data as much as we could without
using any a priori knowledge about the world; we hoped
to find techniques that would automatically pick out
patterns in the data that would mirror what we observe
about human movement. We were at least partially
successful, but the so-called ‘‘Ugly Duckling Theorem’’
from pattern recognition [7] basically states that there is
no ‘‘best’’ set of features; we must give some input into
our algorithms, and this will eventually influence our
results. We are encouraged, however, because the algo-
rithms described in the following sections were devel-
oped by looking at our data from the first study, which
was for a single user, but they have proved effective on
all the subsequent data we have collected.

3.2.1 Finding significant places

In order for any predictions we make to be meaningful,
we want to discard as much of the data as possible. It

would be quite useless to tell the user, ‘‘You’re currently
at 33.93885� N, 84.33697� W and there’s a probability of
74% that you’ll move to 33.93885� N, 84.33713� W
next.’’ Instead, we would like to find points that have
some significance to the user and perform predictions
with those.

The most logical way to find points that the user
might consider significant is to look at where the user
spends her time. It’s unlikely that the user would con-
sider somewhere where she never stopped (say the
middle of the highway) worth consideration, but quite
likely that she would like predictions related to her
workplace or home. It also seems likely that, at least for
most people, locations that could be considered signifi-
cant will be inside buildings where GPS signals do not
reach. This means that there will be a stream of recorded
data until the user enters a building, then a time gap, and
then a resumption of data when the user exits the
building. We used this idea to find what we call places.
We define a place as any logged GPS coordinate with an
interval of time t between it and the previous point.

In order to decide what value for choose for t, we
plotted the number of places found for many values of t
on a graph (Fig. 2) and looked for an obvious point at
which to choose t. Unfortunately, there is no clear point
on the graph to choose. In the end, we decided on ten
minutes as an amount of stopping time that users might
reasonably consider significant. Because of the charac-
teristics of GPS, this is ‘‘safer’’ than choosing smaller
values such as one or five minutes because urban can-
yons and the like can cause signal loss with re-acquisi-
tion times of 45 seconds to five minutes [8]. This could
lead to erroneous detection of places in areas with
intermittent signals.

3.2.2 Clustering places into locations

Because multiple GPS measurements taken in the same
physical location can vary by as much as 15 meters, the
logger will not record exactly the same GPS coordinate
for a location even if the user stops for ten minutes at
precisely the same point every day. This makes

Fig. 1 All GPS data captured during the four month period of the
2001 study

Fig. 2 The number of places found for varying values of time
threshold t for data from the 2001 study
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attempting to use places for modelling impractical; we
could end up with predictions between two points
separated by only a few feet. For this reason, we create
clusters of places using a variant of the k-means clus-
tering algorithm. We call the resulting clusters locations,
and use them instead of places when forming our models.

The basic idea of our clustering algorithm is to take
one place point and a radius. All the points within this
radius of the place are marked, and the mean of these
points is found. The mean is then taken as the new
centre point, and the process is repeated. This continues
until the mean stops changing. When the mean no longer
moves, all points within its radius are placed in its cluster
and removed from consideration. This cluster is then
used as a new location, and has a unique ID assigned to
it. The procedure repeats until no places remain and we
are left with a collection of locations. An illustration of
this is shown in Fig. 3.

To make our predictions as useful and specific as
possible, we want to have locations with small radii, thus
differentiating between as many distinct locations as
possible. However, if we make the radii too small, we
will end up with only one place per location. This would
create the same problem we were originally trying to
solve by clustering! On the other hand, if we make the
radii too large, we could end up with unrelated places
grouped together, such as home and the grocery store.

To find an optimal radius, we run our clustering
algorithm several times with varying radii. We then plot
the results on a graph and look for a ‘‘knee’’ (Fig. 4).
The knee signifies the radius just before the number of
locations begins to converge to the number of places. In
order to find the knee in the curve, we start at the right-
hand side of the graph, and work our way leftwards. For
each point on the graph, we find the average of it and the

next n points on the right. If the current point exceeds
the average by some threshold, we use it as the knee
point. This method is a simple variant of looking for a
significant change in the slope of the graph.

Figure 5 shows the locations found for a time
threshold of ten minutes and a location radius of one
half mile. Note the vast reduction in points from the full
set of data in Fig. 1—while the user travelled by car and
foot over 1,600 miles, there are only a handful of places
that the user actually stopped at for any length of time.

3.2.3 Learning sublocations

When creating our locations with a particular radius, we
may subsume smaller-scale paths—for example, if our
radius is chosen to make prediction efficient on a city-
wide scale, we may obscure prediction opportunities on a
campus-wide scale. Choosing a small radius to allow for

Fig. 3 The illustration of the
location clustering algorithm.
The X denotes the centre of the
cluster. The white dots are the
points within the cluster, and
the dotted line shows the
location of the cluster in the
previous step. At step e, the
mean has stopped moving, so
all of the white points will be
part of this location

Fig. 4 The number of locations found as the cluster radius changes.
The arrow denotes a knee in the graph—the radius just before the
number of locations begins to converge to the number of places

279



multiple campus locations, however, will remove the
ability to predict broader trips such as ‘‘Cam-
pus fi Home’’ in favour of things like ‘‘Physics build-
ing fi Home,’’ ‘‘Math building fi Home,’’ and so forth.

To solve this problem, we introduce the concept of
sublocations. For every cluster we find in the main list of
places, we determine if there is a network of sublocations
within it that may be exploited. This is accomplished by
taking the points within each location and running them
through the same clustering algorithm described above,
including graphing varying radii and looking for the knee
in the graph (Fig. 6). If the knee exists, that radius is used
to form sublocations, which can then have the same

prediction techniques applied as the main locations. If no
knee exists, we assume that there are not enough points
within the location to form sublocations. An example of
sublocation creation can be seen in Fig. 12.

The sublocation algorithm can be applied multiple
times, to create sub-sublocations and so on. This can
allow for many scales, such as nation-level, city-level,
campus-level and so on; given sensors with higher
accuracy than GPS, this could even be extended to
building- and room-level sublocations.

3.2.4 Prediction

Having reduced our original hundreds of thousands of
GPS coordinates to just a few significant locations, the
next step is to create the predictive model we discussed
earlier.

Once we have formed locations from all of the data,
we assign each location a unique ID. Then, going back to
the original chronological places list, we substitute for
each place the ID of the location it belongs to. This gives
us a list of locations the user visited, in the order that
they were visited.

Next, a Markov model is created for each location,
with transitions to every other location. Each node in the
Markov model is a location, and a transition between
two nodes represents the probability of the user travel-
ling between those two locations. If the user never
travelled between two locations, that transition proba-
bility is set to zero.

Figure 7 shows a partial Markov model (created
from the preliminary data) with three paths—those for
‘‘Home’’, ‘‘CRB’’, and ‘‘VA’’. Although the full model
contains many paths, for clarity only transitions between
those three locations are shown. The labels on the lines
between locations show the relative probabilities of each
transition; for example, seventy-seven trips were made
from ‘‘CRB’’ to other locations, and of those trips, six-
teen were made to ‘‘Home’’. Of three trips made from
‘‘VA’’ to other places, one was made to ‘‘Home’’ and
one was made to ‘‘CRB’’.

Note that the number of trips made from ‘‘VA’’ are
relatively few as compared to those from ‘‘Home’’ and
‘‘CRB.’’ It is possible that ‘‘VA’’ is a new location, or one
that is seldom travelled to by the user. Since there are so
few trips, this node should not be used for prediction;
however, the number of trips (in both directions) between
‘‘Home’’ and ‘‘CRB’’ are significant and can be used for
prediction. A simple test on whether a path has sufficient
evidence for prediction is to compare the path’s relative
frequency to the probability that the path was taken by
chance. For example, the total number of trips taken
from ‘‘VA’’ to other locations was 3; this makes the
probability that some path was taken by chance 1/3. This
is the same probability as the ‘‘VA’’ to ‘‘CRB’’ transition,
so this is probably currently not a useful prediction.

Fig. 7 shows a first order Markov model; that is, one
in which the probability of the next state is dependent

Fig. 6 The number of places found in a location as the location’s
radius changes. The arrow indicates the knee in the graph; the
radius at this point will be used to form sublocations

Fig. 5 The locations in the Atlanta area, as determined with a time
threshold of t=10 minutes and a location radius of one half mile

280



only upon the current state. We also have the ability to
create nth order models, in which the probability of the
next state is dependent on the current state and the
previous n)1 states.

By using higher-order models, we can get significant
increases in predictive power. For example, in Table 1
the user’s probability of travelling from A to B (‘‘Home’’

to ‘‘CRB’’) is 70%. However, if we know that the user
was already at B, the user’s probability of travelling
from A to B increases to 81%! Using a second-order
model like this could prove particularly useful in cases
where the user makes a stop on the way to a final des-
tination, such as stopping by the coffee shop on the way
to work. If the system detects the sequence
‘‘Home fi Coffee Shop,’’ the chances of ‘‘Work’’ being
the next destination might be higher than when
‘‘Home fi Grocery Store’’ was detected.

The ability to use nth order Markov models raises the
question of what the appropriate order model is to use
for prediction. Bhattacharya and Das have examined
this question from an information theoretic standpoint
[2]. In practice, a natural limitation is the quantity of
data available for analysis; as shown in Table 1, even
with four months of data, the number of second order
transitions is relatively small. For this reason, we limited
ourselves to a second order model in the pilot study.

4 The Zürich study

To determine whether the algorithms developed during
the pilot study generalise, we conducted a second study
in Zürich, Switzerland with multiple users. Our users
had never lived in Zürich before but had moved to the
city as a group to conduct research with another uni-
versity. We equipped the users with GPS systems soon
after arrival. By correlating the locations across subjects
with similar schedules we could establish a sense of
whether the results of our place and location corre-
sponded with areas where the users actually spent their
time. By allowing the users to name these locations
independently and comparing the results, we can
establish whether the locations are meaningful on a
more ‘‘semantic’’ level (i.e., the users might have inde-
pendently established an identity for the location for
their own purposes in everyday conversation). Finally,
by comparing predictions made across similar users, we
can begin to determine how the complete algorithm
generalises from the pilot study.

4.1 Changes to the apparatus

For the next phase of our study, we wished to collect
more data. To this end, we acquired six more GPS
receivers and data loggers from GeoStats. The receivers
were the same Garmin units we used before (with an
accuracy of 15 meters RMS [8]), and the data loggers
were updated with more memory, allowing them to log
roughly 200,000 GPS coordinates before needing to be
cleared. Because of this extra capacity, we elected to turn
off the speed-limiting feature of the loggers, in case we
had use for the extra data in the future.

Previously, our GPS receiver was powered by six
‘‘D’’-size batteries, and the logger was powered by a
single 9-volt battery. Because of the number of units we

Fig. 7 A partial Markov model of trips made between home, the
Centennial Research Building (CRB), and the Department of
Veterans Affairs (VA). Because some paths are not shown, the
ratios do not sum to 1

Table 1 Probabilities for transitions in first and second order
Markov models from preliminary data. Key: A=‘‘Home’’,
B=‘‘CRB’’, and D=‘‘south of Tech’’

Transition Relative frequency Probability

A fi B 14/20 0.7
A fi B fi A
A fi B fi C
A fi B fi D
A fi B fi E
A fi B fi F
A fi B fi G
A fi B fi H
A fi B fi I

3/14
2/14
3/14
1/14
1/14
1/14
1/14
1/14

0.2142
0.1428
0.2142
0.0714
0.0714
0.0714
0.0714
0.0714

B fi A 16/77 0.2077
B fi A fi B
B fi A fi J

13/16
3/16

0.8125
0.1875

B fi C 10/77 0.1298
B fi C fi A
B fi C fi K

6/10
4/10

0.6
0.4

D fi B 5/7 0.7142
D fi B fi A
D fi B fi L
D fi B fi M

2/5
2/5
1/5

0.4
0.4
0.2
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had, we needed to create a better power solution. We
therefore used a single Sony InfoLithium NP-F960
camcorder battery to power both the GPS receiver and
the data logger. We added a 5-volt regulator for the
receiver, and were able to power the logger directly from
battery voltage. Although this reduced the bulk and
weight of the setup, it did require each subject to
remember to change and charge the battery daily, since
the GPS receiver draws between 500 and 600 milliwatts.

We equipped six users with the GPS receivers and
loggers during a seven-month research program in
Zürich, Switzerland. The users were requested to carry
the units with them as much as possible, and were in-
structed to charge and change the battery daily. This
requirement occasionally proved problematic, as some
users often forgot to change the battery. Users also often
forgot or chose not to wear the receiver and logger.
Also, near the beginning of the study one user broke the
cabling for his unit and was unable to collect any data
for the rest of the study. Despite these problems, we were
able to log a total of nearly 800,000 data points.

One issue we discovered while examining the re-
corded data is that the GPS receivers have a ‘‘dead-
reckoning’’ feature, which, when the GPS signal is lost,
outputs data extrapolated from the last known heading
and velocity for 30 seconds. We also found that the GPS
receiver would occasionally output a few completely
spurious points, possibly when the signal was bad; the
most severe example of this is shown in Fig. 8. However,
due to the nature of our prediction algorithms (described
in a previous section), these glitches had little impact on
our eventual results.

After consultation with Garmin technical support, we
learned (too late) that dead-reckoning can be turned off,
and that theNMEAstring returned from theGPS receiver

will contain extra information about the signal, such as
confidence. Because the current data logger interprets the
NMEA string and stores only the latitude, longitude, date
and time, we are investigating building our own logger
that will save all of the information provided by the re-
ceiver. We are also looking into the possibility of using
GPS-enabled cellular phones coupled with wearable
computers to log data; these would be an advantage in
that users would be more likely to carry the units and the
batteries would be charged along with the phone.

4.2 Changes to the methodology

When finding places, an important consideration is how
time is used—in our previous study, we considered a
point a place if it had time t between it and the previous
point. This basically meant that places would be detected
when the user exited a building and the GPS receiver re-
acquired a lock. Our current method, however, registers
a place when the signal is lost, and so is not dependent
upon signal acquisition time. Figure 9 shows the differ-
ence between these two methods. Assuming some
knowledge about the general habits of human
beings—namely, that they will tend to visit a few places
often—it seems apparent that the second method does a
much better job at detecting where users spend their
time. The results of the second method, in Fig. 9b, also
match closely users’ actual experiences.

We also revisited the problem of choosing a time
threshold with our new data from Zürich. Unfortu-
nately, as shown in Fig. 10, t and the number of places
found again have a relationship such that there is no
obvious point at which to choose a value for t. As such,
we kept our original ten-minute threshold for t.
Figure 11b shows the places found with this ten-minute
threshold for one of the users in Zürich.

4.3 Evaluation

To evaluate how the algorithm developed in the pilot
study generalises, we present two results. The first result
investigates the correlation between the names assigned
to particular locations by individual users. The second
result demonstrates that even in a significantly different
environment, the same prediction method generates
consistent results across multiple users.

Figure 11 shows sample data for one of the users in
the Zürich study, illustrating how the data is signifi-
cantly reduced by transformation from raw data into
places and locations. Figure12 provides an example of
sublocation creation from some of the Zürich data.

4.3.1 Naming across users

To help investigate our algorithms, we developed a vi-
sualisation application called GPSVis using the free user

Fig. 8 An example of spurious GPS data; the user did not spend
time in the Mediterranean
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interface toolkit Gtk+. GPSVis automatically down-
loads maps from the Internet and displays GPS points,
places and locations on the maps, and allows the user to
scroll around and zoom in on any area. It also provides

Fig. 10 The number of places found for varying values of time t for
each user in the 2002 study, summed

Fig. 9 Picture a shows the results of the old place finding
algorithm, while b shows the results of the new algorithm on the
same data. Clusters are much more evident in b, and the clusters
match well with users’ experiences. Each colour (or shape) of dot in
the pictures represents a different user

Fig. 11 An illustration of the data reduction that occurs when
creating places and locations. Picture a shows the complete set of
data collected in Zürich for one user, around 200,000 data points.
Picture b shows the roughly 100 places that were found using this
data. In picture c, we see that this has been reduced to just 17
significant locations
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the ability to click on any location and furnish it with a
name or other identifier.

Using GPSVis, we asked each of our subjects to give
names to each location found for that individual in the
city of Zürich. We instructed them to enter ‘‘unknown’’
as the name for any location they did not recognise or
remember. In order to cut down on spurious locations,
we did not show locations with only one place inside
them, reasoning that the user had been there only once,
if at all.

Of the five users, three had 11 locations within Zürich,
one had 9 and one had 6. It is interesting (though not
necessarily significant) that the three users with more
locations were in Zürich for the full seven month research
program, while the two with 9 and 6 locations were in
Zürich for only four and three months, respectively. The
most ‘‘unknown’’ locations any user had in Zürich was 2,
and these can be explained by the time lag (about three
months) between returning from Zürich and asking the
users for names; in fact, several users mentioned the effect
of the time lag on their memory.

Although the subjects lived in various places in Zür-
ich, they all worked in the same building (called ETZ).
We used this as an opportunity to verify that our loca-
tion-finding algorithms picked common places as fre-
quently-visited locations for everyone. Each person’s
collection of names included ‘‘ETZ,’’ so we mapped
those points against a building-level map of Zürich to see
how they correlated. The results can be seen in Fig. 13.

4.3.2 Prediction

We applied the same prediction algorithms developed on
the Atlanta data (described in a previous section) to the

data from Zürich. Tables 2 and 3 show named predic-
tions from this data. Each prediction has its relative
frequency compared against random chance, that is, the
odds of that path being picked purely by random.

5 Discussion

In our pilot study, we collected four months of data
from a single user and then developed algorithms to
extract places and locations from that data. These loca-
tions were then used to form a predictive model of the

Fig. 12 A single location divided into two sublocations. The large,
green dot is the original location, which is centered to the right of
the ETZ building in Zürich. The smaller, white dots are the places
that made up that location and the two light blue pentagons are the
sublocations that were made from the location Fig. 13 Locations named ‘‘ETZ’’ by users overlaid on an outline of

the actual ETZ building (there are two orange dots because one
user named two locations ‘‘ETZ’’). The Xs correspond to building
entrances. The mean distance to the centre point of the six points
was 48.4 meters, and the standard deviation was 20.8 meters

Table 2 Probabilities for transitions for various orders of the
Markov model for one of the Zürich users. This user had 215
visits to 18 unique locations. Key: A=‘‘ETZ’’, B=‘‘Home’’,
C=‘‘Sternen Oerlikon tram stop’’, D=‘‘Zürich Hauptbahnhof’’,
E=‘‘Bucheggplatz tram stop’’, and F and G are unlabelled (outside
of Zürich) GPS coordinates. Random chance was determined by
Monte Carlo simulation

Order Transition Relative
frequency

Random chance

1
1
1

A fi B
A fi D
A fi C

25/61=0.41 0.0065
16/61=0.26 0.0065
11/61=0.18 0.0065

2
2
2

A fi B fi C
A fi B fi A
A fi B fi E

17/25=0.68 0.0002
7/25=0.28 0.0002
1/25=0.04 0.0002

3
3

A fi B fi C fi A
A fi B fi C fi F

12/17=0.71 0.000014
2/17=0.12 0.000014

4
4

A fi B fi C fi A fi D
A fi B fi C fi A fi G

6/12=0.50 0.00000097
5/12=0.42 0.00000097
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user’s movements. The model demonstrated patterns of
movement that occurred much more frequently than
chance and were significant in the context of the user’s
life. These preliminary results suggested that our method
may be able to find locations that are semantically
meaningful to the user.

We next used these algorithms on new data collected
from multiple users over a longer time span in a new
environment. Locations discovered by the algorithm that
were common to several users were named similarly by
those users, indicating a certain level of common mean-
ing associated with those locations. In addition, a
building known to be common to all the users was
automatically labelled as a location by the algorithm in
each user’s data set. The locations discovered had a mean
distance to the centre of the points of 48.4 meters
(approximately the length of the building) and a standard
deviation of 20.8 meters. Locations shared by a subset of
the users were also independently discovered in each
user’s data. Thus, the algorithm seems to give consistent
results across subjects. The predictive models generated
for each user based on their locations showed relative
frequencies significantly greater than chance, also indi-
cating that the method from the pilot study generalises.

6 Future work

While we have location prediction fully functioning, we
have not yet implemented time prediction—that is, we
can predict where someone will go next, but not when.
Our next task will be to extend the Markov model to
support time prediction; at the same time, we will
investigate how variance in arrival and departure times
can indicate the importance of events. For instance, if
the user always arrives at a certain location within a 15-
minute time period, that location may be more impor-
tant than one with a one-hour variance.

Detecting ‘‘structures’’ through time may be possible;
in the same vein as finding paths that people take, we
may be able to find general patterns of routine. For
example, looking for very long (6–10 hour) gaps in the
data may clue us in to when people are at home sleeping
without explicitly coding knowledge of day/night cycles
into the algorithms.

One limitation of our approach to the Markov
models is that changes in schedule may take a long time
to be reflected in the model. For example, a college
student might have a model that learned the locations of
her classes for an entire semester (16 weeks). When the
next semester starts, she may have an entirely different
schedule; because in our model each transition is given
equal weight, it might take the entire semester for the
model to be updated to correctly reflect the new infor-
mation. One way this could be solved is by weighting
updates to the model more heavily; we must be careful,
however, to avoid unduly weighting one-time trips.

Currently, our system does not update the user
models in real-time; this will become more necessary as
we add more users to our system. We plan on not only
allowing instant integration of location data, but
allowing the users to view their models and give feed-
back; if the user knows her schedule has changed but
that the model has not yet detected this, she can update
the model as appropriate.

Speed of travel may provide clues to creating sublo-
cations. If a person is detected to be moving very slowly
in a particular area, it may be an indicator that they are
on foot. Sublocations could then be automatically
created for that area.

Our planned interface will also include an interface to
naming locations; once a user has been detected at a
possible location more than a couple times, we can
prompt the user for a name. With multiple users, the
system could suggest names for that location that other
users had previously used. The user could also indicate
that the detected location isn’t meaningful and it could
be ignored for future predictions.

Along with our user interface, we would like to create
an application to easily enable favour-trading applica-
tions such as those discussed earlier. A simple applica-
tion would allow users to enter to-do items and associate
them with particular locations. A software agent for the
user’s community could then search each person’s pre-
dictive model to determine which person might be near
that location. The to-do application would then show
the user a rank-ordered list of members of the commu-
nity that might be in a position to perform a favour for
that user.

Using the algorithms we developed on our original
data to process the data from our second study verified
that our techniques are valid; however, there is still work
to be done in this area. We would like to explore how
robust our algorithms are to change; one experiment we
intend to perform is to randomly permute our lists of
places and create locations. We can then see how
dependent the clustering algorithm is on list ordering.
We will also investigate other algorithms to see if any
provide more natural clustering.

While in our current procedures we discard much of
the data, it may be useful to go back to the original data
stream when doing prediction. We may be able to detect
situations where the user passes through a location but
does not stop, or only stops briefly.

Table 3 Probabilities for transitions for various orders of the
Markov model for a second Zürich user. Key: A=‘‘Home’’,
B=‘‘Kirche Fluntern bus stop’’, C=‘‘Post office’’, and D=‘‘Klu-
splatz tram stop’’

Order Transition Relative
frequency

Random chance

1
1

A fi B 24/34=0.71 0.005
A fi C 2/34=0.06 0.005

2
2

A fi B fi A 11/24=0.46 0.0038
A fi B fi D 9/24=0.38 0.0038

3
3

A fi B fi A fi B 8/12=0.67 0.00376
A fi B fi A fi D 2/12=0.17 0.00376
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Having data for multiple people creates some inter-
esting opportunities for jump-starting prediction. If
person A is found to be in several of the same locations
as person B, it may be possible to use person B’s col-
lection of locations and predictions as a base set of data
for person A. Then as person A continues to collect
more data, the locations and predictions can be updated
appropriately.

7 Conclusions

We have demonstrated how locations of significance can
be automatically learned from GPS data at multiple
scales. We have also shown a system that can incorpo-
rate these locations into a predictive model of the user’s
movements. In addition, we have described several
potential applications of such models, including both
single- and multi-user scenarios. Potentially, such
methodologies might be extended to other sources of
context as well. One day, such predictive models might
become an integral part of intelligent wearable agents.
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